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A Little Bit About Myself

• 2002-2018: Professor of ECE, NCSU

• 2008: GCOE Visiting Prof, Waseda Univ, Japan

• 2011: Consultant, Intellectual Ventures

• 2016-2018: Program Director, NSF
– SaTC, XPS/SPX, CSR, BigData

– Co-Founded NSF/Intel Partnership on Foundational 

Microarchitecture Research (FoMR)

• 2018-present: UCF
– Director of Cybersecurity & Privacy Cluster, Prof in CS 

• ARPERS research group
– 14 PhD grads + 7 PhD students (2 at NCSU + 5 at UCF)
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UCF Cyber Security & Privacy Cluster
Dr. Yan Solihin, Cluster Lead Dr. Aziz Mohaisen Dr. Clay Posey

Dr. Gary Leavens Dr. Cliff Zou Dr. Paul Gazzillo

Dr. Pam Wisniewski Dr. Amro Awad Dr. Yao Li
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Research Areas
• Trustworthy Cloud (secure enclave, side channels): Yan, Gary, Paul, Amro
• Blockchain (smart contract, crypto jacking, scalability): Aziz, Paul
• Secure Machine Learning (adversarial ML, integrity protection, recovery): 

Aziz, Yan
• Organizational and behavioral (insider threat, policy compliance): Clay
• Privacy (networked privacy and online safety, privacy-oriented 

architecture, data enclave): Pam, Yan, Clay
• Malware (analysis): Aziz, Cliff
• Digital forensics (fraud detection and forensics): Cliff
• Software security (formal methods, software engineering): Gary, Paul
• IoT security: Cliff

We expect to hire 2 tenure-track 

Assistant Professors for 2020. 

Please spread the word!
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Internet of Things

Source: internetSolihin - ISVLSI 2019 Keynote



Exponential Growth of Data

•YouTube users upload 48 hours of new video 
every minute of the day. (Source)

•100 terabytes of data uploaded daily to 
Facebook. (Source)

Solihin - ISVLSI 2019 Keynote

http://wikibon.org/blog/big-data-infographics/
http://wikibon.org/blog/big-data-infographics/


Cloud and Edge Computing Model
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Secure Execution Environment (SEE)

• Goal: 
– Confidentiality of a, f(x), and f(a)
– Integrity of f(x)
– User receives f(a) 

• What could go wrong? 

a, f(x)

f(a)
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Threats

• Data centers warehoused in a large facility

– Physical security usually very good

• Business model requires high utilization, through 

virtualization and hardware sharing

• Vulnerabilities

– Large attack surface

• System software (hypervisor and OS) security point of failure

• Hypervisor (200-800K LoCs) and OS (e.g. 50M LoCs)

– Side channels threats: attacker VM may infer secret 

from behavior of victim VM

– SEE attempts to reduce the Root of Trust
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From PC to Cloud

• System SW is trusted 
– Windows XP ~50M LoC
– Device drivers, Hypervisor, ROM, 

microcode, etc.
• Security is software 

responsibility

• TCB only HW+Arch
– System SW untrusted

• Arch provides secure 
environment (e.g. enclave)

Architecture

Hardware

System Software
(Hypervisor, OS, 
device drivers)

Application Software

PC

Trusted

Untrusted

ISA
Architecture

Hardware

System Software
(Hypervisor, OS, 
device drivers)

Application Software

Trusted

Untrusted

Cloud

Encl
ave
SW
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Industry Solution: TEE

• Several competing models
Technology HW Trusted Base SW Trusted Base

TPM Motherboard (CPU, 
TPM, DRAM, buses)

All software

TrustZone CPU chip Secure world 
(firmware, OS, apps)

Secure Processor (XOM, 
Aegis, SGX, etc.)

CPU chip Application + small SW

Source: Devadas
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A Look Back: Secure Processor

• CPU as the trusted secure parameter
– Functionally correct and bootstrapped securely

• Everything else untrusted
– System bus, memory, I/O, prone to snooping/modifications

• Requires memory encryption and integrity verification
– (also key management, attestation, not part of the talk)
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Memory Encryption and Integrity 
Verification

• Writeback data block X from Cache
– Encrypt X, compute H(X), then store in memory

• Cache miss on data block X
– Fetch E(X) and H(X)
– Decrypt E(X), compute H(X) and compare vs. Mem[H(x)]
– Verify freshness of X

X

E(X), H(X)
Core

Decrypt E(X)
Verify H(X)

Encrypt X
Produce H(X)
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Key Milestones

• XOM (2000): memory encryption
• Yang et al. (2003): counter-mode encryption 
– Encryption delay removed from critical path delay
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Last Level 
Cache

Address Counter

EncryptionKey

IV

Counter 
Cache

Main
Memory

Secure Chip Boundary

WriteBack X Ciphertext of X

Addr(X)

+1

Encryption Process

• Key to security: counter must never be reused
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Last Level 
Cache

Address Counter

EncryptionKey

IV

Counter 
Cache

Main
Memory

Secure Chip Boundary

Plaintext of X Ciphertext of X

Addr(X)

Fetch (X)

Decryption Process

• Key to performance: counter cache miss rate 
must be low
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Key Milestones

• XOM (2000): memory encryption
• Yang et al. (2003): counter-mode encryption 
– Encryption delay removed from critical path delay

• AEGIS (2003): Merkle Tree memory integrity 
verification
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Merkle Tree

• A tree of hashes covering all 
data in memory

• Root always kept on chip
• Non-root are cacheable
• Verification by computing 

hash and comparing it up 
the tree

Data
Blocks

(64B each)

128-bit 
Hash 

Stored in Proc Chip

Cacheable

Merkel Tree

• ~Half of main memory 
unusable for data: 
– MT (33%) + Counters (9%)

• Insecure DataMain 
Memory MT nodesCounters

58% 9% 33%
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Key Milestones

• XOM (2000): memory encryption
• Yang et al. (2003): counter-mode encryption 
– Encryption delay removed from critical path delay

• AEGIS (2003): Merkle Tree memory integrity 
verification

• Yan (2006): discovery of counter-rollback 
attacks, split counter

DataMain 
Memory MT nodesCounters
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Split Counter Organization [Yan’06]
• Monolithic counter: too big (high counter cache miss rate) vs. 

too small (frequent whole memory re-encryptions)
• Use Split Counter instead

Cache blk 0
512-bits

4KB Page (64 Cache blocks) Cache blk 1
512-bits

Cache blk 63
512-bits

…

Major (per page)

…

64-bit 7-bit 7-bit
… 7-bit

Major Minor Cache line address

IV

• Major counter never overflows => no whole memory re-encryption
• Effective counter size is 8 bits for a 64B block (88% reduction!)Solihin - ISVLSI 2019 Keynote



Key Milestones

• XOM (2000): memory encryption
• Yang et al. (2003): counter-mode encryption 
– Encryption delay removed from critical path delay

• AEGIS (2003): Merkle Tree memory integrity 
verification

• Yan (2006): split counter, discovery of counter-
rollback attacks

• Rogers (2007): Bonsai Merkle Tree

Solihin - ISVLSI 2019 Keynote



Bonsai Merkle Tree [MICRO’07]
• First to consider integrity 

protection for counter-mode 
encryption

• Protect data using stateful MAC
• Key: only counters need 

freshness protection
• Bonsai MT = MT over counters 

only! 
– Same security guarantee

• Counter + BMT only 
take up 1.4% of main 
memory

• Total for security 21.4%

Data
Blocks

(64B each)

128-bit 
Hash Cacheable

DataMain 
Memory BMT

Split
Ctr

78.6% 1% 20%

Hash

0.4%
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Trusted Execution Environment in SGX

• CPU as the secure 
parameter

• Attestation of enclave 
code

• Key sealing
• Memory encryption 

and integrity 
verification

Reference Number: 332680-002               Revision: 1.1

Critical Feature: Attestation and Sealing

39

Remote Platform
Client Application

Enclave

Authenticated ChannelAuthenticated Channel

1. Enclave built & measured
2. Enclave requests REPORT (HW-signed blob that 

includes enclave identity information)
3. REPORT sent to server & verified
4. Application Key sent to enclave, first secret 

provisioned

Intel and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries. *Other names and 

brands may be claimed as the property of others. Copyright © 2015, Intel Corporation.

Source: 
Intel

Reference Number: 332680-002               Revision: 1.1

MEE Counter Mode
Address has 39 bits; idx: 2 bits representing location in the CL; Version: 56 bits
Encryption of 1 CL 
involves 4 AES 
operations

194
Intel and the Intel logo are trademarks of Intel Corporation in the U. S. and/or other countries. *Other names and 

brands may be claimed as the property of others. Copyright © 2015, Intel Corporation.
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Problems with Intel SGX

• Use monolithic counters
– Large memory overheads and slow 
– Why not use split counter? 

• Use derivative of BMT: counter tree
• Single chip only
– Won’t work for whole memory, need DSM style

• Does not work with Persistent Memory
• Side channel ignored
– Attackers will exploit this
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Traditional Server => Rack-Scale Server

Memory
Proc

Memory
Proc

Memory
Proc

. . .

Storage

Storage

Storage

Traditional Server

Mem
oryProc

. . .

Mem
oryProc

Mem
oryProc

. . .

Memory
Memory

Stor
age

Stor
age

Stor
age

Storage
Storage

Memory

Memory Pool

Storage Pool

Rack-Scale Server

Near (DRAM) Near (NVM) Far
Latency 1X ~5X ~30-50X

Bandwidth 1X 1X 0.1X
Capacity 1X 2X 10-100XSolihin - ISVLSI 2019 Keynote



Key Milestones

• Rogers (2006): Distributed Shared Memory 
encryption

Solihin - ISVLSI 2019 Keynote



Architecture and Assumptions

P

L1

L2

Security 
Boundary

SNC

Mem. Ctrl. Dir.

Memory

P

L1

L2

Security 
Boundary

SNC

Mem. Ctrl. Dir.

Memory

Interconnect NetworkChallenges
• Processor-to-Processor (P2P) unprotected
• A single load/store instruction may involve P2M and P2P
• Need a unified security protocolSolihin - ISVLSI 2019 Keynote



Huge Overheads from the Traditional 
Cache Coherence Protocol

Requestor Home Home 
Memory

D

E

D

Latency

Get

Fetch

CTEX1

CTEX2

Requestor Home Home 
Memory

PG

Latency

Get

Fetch

CTEX1

CTR

Results
• Overheads are reduced by a factor of 3.3x
• Only minor changes to cache coherence
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NVM and Storage Class Memory

Intel 3D Xpoint (Optane): 
• 20nm process
• SLC (1 bit/cell)
• 7 microsec latency
• 78,500 (70:30 random) read/write IOPS
• NVMe interface
• 375GB – 1.5TB

The image part with relationship ID rId2 was not found in the file.

Source: InternetSolihin - ISVLSI 2019 Keynote



Persistent Memory

• Program relies on data 
to be recoverable after 
crash

• Counter and MT trees 
must be updated 
atomically w.r.t. to data

• Else data not 
recoverable upon crash

• Secure persistent 
memory [ISCA’19]

P

NVMM

Cache

Cfflush X Ctr updated

Failure
MAC/MT updated
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Processor

Optimizing Merkle Tree Persistence

13

…

Covers  Non-Persistent Region

Non-Persistent Data
…

Persistent Data

Metadata 
Cache UpdateUpdate

Covers Persistent Region
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• Strictly Persisting upper levels reduces recovery time.
• In 8-ary tree and split-counter organization, only persisting the first two levels can speed up recovery time by 

64*8= 512x times.
• Recovering 8TB memory can take more than 7 hours.

Recovery Time vs. Runtime Performance Overhead

14

Processor

Root

Equal?

Data Blocks (hundreds of Billions Blocks)

Counter Blocks (billions)

L1 Hash Blocks 
(hundreds of millions)

L2 Hash Blocks 
(tens of millions)

…

Root

Hours

minutes

Tens of seconds

Few seconds

Iteration Time

64x

8x

8x
Cache

OsirisCounter Blocks (billions)

L1 Hash Blocks 
(hundreds of millions)

L2 Hash Blocks 
(tens of millions)

TriadNVM-1

TriadNVM-2
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Reducing Initialization Time of Non-Persistent Region

15

…

PersistentNon-Persistent

0000 0000 0000 0000

0xfabc0xfabc

0x63d

0x3ab

Encryption counters 

Read/Write

000

ae00
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Impact on Performance

 1

 2

 3

 4

 5

 6

 7

 8

 9

QUEUE

HASHTABLE

SWAPARRAY

MIX1
MIX2

MIX3
MIX4

DAXBENCH1

DAXBENCH2

DAXBENCH3

DAXBENCH4

LBM
MCF

ZEUS
BWAVES

GCC
LESLIE3D

MILC
SJENG

CACTUS

HMMER

LIBQUANTUM

OMNETPP

Gmean

Sl
ow

do
wn

 (N
or

m
al

ize
d 

to
 B

as
el

in
e)

Benchmarks

The Impact of Persisting Merkle-Tree and Counters on Performance

Strict
TriadNVM-1
TriadNVM-2
TriadNVM-3

TriadNVM-1
4.9% performance overhead
4 minutes to recover 8TB

TriadNVM-2
10% performance overhead
0.5 minute to recover 8TB

Strict Persistence
121.5% performance overhead
Immediate recovery

TriadNVM-3
15.6% performance overhead
3.83 seconds to recover 8TB
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Side Channel Vulnerabilities
• “Side channel is the new buffer overflow”

- private conversation with chief Scientific Advisor for National Security, UK

• Side channel vulnerability arises from implementation
• Current TEE has not addressed side channels
– Physical: requires physical access to the system

• Power
• Differential fault
• Electromagnetic (EM)
• Memory access pattern
• Etc.

– Logical: does not require physical access
• Cache
• Data remanence

Solihin - ISVLSI 2019 Keynote



Page Fault Side Channel

• [Xu S&P’15]
WelcomeMessage and the other two functions are on dif-
ferent code pages. To launch an attack, we restrict ac-
cess to the code pages of WelcomeMessageForMale and
WelcomeMessageForFemale. When one of them is called,
a page fault will be triggered. We can tell the user’s gender
based on which function was called.

In Figure 2, we show an example function with input-
dependent data access. The CountLogin function counts
the number of male and female user logins by using two
global variables gMaleCount and gFemaleCount. The func-
tion CountLogin and the two global variables are usually
on different memory pages since the former is executable
and the latter is writable. To launch an attack, we restrict
access to the data page or pages containing gMaleCount and
gFemaleCount. When one of the variables is accessed, a page
fault will occur and the page-fault address will reveal the user’s
gender. Furthermore, we can infer the total number of male
and female users by counting the number of page faults at
gMaleCount and gFemaleCount.

The key to a successful attack is to recognize the input-
dependent control transfers (e.g., WelcomeMessageForMale
or WelcomeMessageForFemale) or the input-dependent data
accesses (e.g., gMaleCount or gFemaleCount). When actual
page-fault addresses are given, this can be done straightfor-
wardly. However, when page faults are reported at page-level
granularity, this becomes a challenge. Next, we present our
approach to solving this problem.

B. Inferring Input-Dependent Memory Accesses

The first stage in our attacks is an offline analysis of an
application’s code to identify what control transfers and data
accesses are input dependent and how we can use them to
reveal the application’s secrets. Currently, we do this manually
and on a per-application basis. Here, we assume this offline
analysis has identified input-dependent control transfers or
data accesses and focus on how we can infer them when
page faults are reported at page-level granularity. In other
words, this section explains how we deduce that a function at
a particular address has been called or a variable at a particular
address has been accessed, given only a trace of page numbers,
but not complete addresses.

It is quite common for a function (or data object) to share a
memory page with other functions (or data objects). When a
page fault happens on such a memory page, we cannot directly
tell if the function (or data) of interest is being accessed. The
key idea for inferring a particular function invocation or data
access is to identify page-fault sequences that are unique to
the function (or data) access.

To identify unique page-fault sequences for a specific
memory access, we run the application outside the protected
environment (without the shielding system) and record page-
fault traces by restricting access to all pages. Upon a page
fault, we record the faulting address and remove the restriction
for the faulting page in order to allow application execution
to proceed. Subsequently, we add the restriction again, as

!"#$%&
%%'
%%!(#$)
%%'
%%!*#$)
%%'
+

!(#$%&
%%'
%%!,#$)
%%'
+

!"#$

!"#$%&

!"#$

!"#$%'

!*#$

!"#$%(

!,#$-%!.#$

!"#$%)

&*%'*%)*%'*%&*%(*%)*(*%&

!, !.

(+,$%-"#$%."/01%2$3/$45$6

!"#$70$8$0%5+419+0%19"42.$92

!*#$%&
%%'
%%!.#$)
%%'
+

:+/95$%5+,$

Fig. 3: The attacker can only observe page-level control transfers.
However, functions sharing the same page can often be distinguished
by different page-fault sequences.

described in Section III-C. This gives us a trace of byte-
granular page-fault addresses.

We associate two addresses with each page fault: We call
the address whose access triggered the page fault the page-
fault address. We call the address of the instruction that was
being executed when the page fault occurred the instruction
address of the page fault. For a code page fault, these two
addresses are identical (except for instructions that cover two
memory pages and the page-fault address lies on the second
page).

Control transfers: To infer a specific control transfer, we
only record page faults of code pages. Let us assume we
collect a set of page-fault traces {Pi = {pji}}, where Pi

represents the i-th trace, and pji represents the page-fault
address of the j-th page fault in the i-th trace. We collect
multiple page-fault traces to have a better coverage of an
application’s execution paths. Since executables may be loaded
at different addresses in different runs, we convert page-fault
addresses to be module offsets.

For each trace Pi we generate a new trace Qi = {qji }
where qji is the page base address of the j-th page fault in
the i-th trace. The Qi are of the types of traces our attacks
would obtain. Let f be the target address of the control
transfer we want to identify. Then for each s, t such that
pts = f , we search for the minimum k ≥ 1 such that, for
any sequence (qj−k+1

i , qj−k+2
i , ..., qji ) that matches with the

sequence (qt−k+1
s , qt−k+2

s , ..., qts), p
j
i equals to f . That is, for

each occurrence of f in any of the Pi traces, we search
for the shortest sequence of its preceding pages for which
the corresponding sequence in Qi leads only to f for all its
occurrences. In general, we may find more than one such
sequence for f , since different appearances of f in the traces
may be preceded by different page sequences. For example, a
function f may be called from several places.

Finally, we use the set of unique sequences
{(qt−k+1

s , ..., qts)} to identify the control transfer. In the
attacks we will present in Section IV, there is usually a
single page-fault sequence and the length is usually 2 or 3
for inferring a specific control transfer.

Figure 3 shows how two functions sharing the same page
can be distinguished by different page-fault sequences.

Data accesses: To infer a data access at a specific memory

643643

Randomization (ASLR) [13] to reveal the base addresses of
loaded modules.

A. FreeType
FreeType is a user-level font library that renders text onto

bitmaps. It is widely used in a variety of software products,
including Linux distributions, the Android and iOS platforms,
Ghostscript, and OpenJDK. It supports different font formats,
including TrueType, the most common format for fonts on
Microsoft Windows and Mac OS. We describe an attack is on
TrueType. Other font formats are subject to similar attacks.

In TrueType fonts, a glyph for a character is represented as a
collection of line and curve commands as well as a collection
of hints. FreeType executes the commands and processes the
hints to draw a glyph onto a bitmap. Since different glyphs
have different commands and hints, the control flows for
rendering them are different. Therefore, these control flows are
dependent on the character that is being rendered. We exploit
this to infer the rendered text. We do not need to induce data
page faults in this attack.

The render function for TrueType is TT_Load_Glyph. This
function is invoked for rendering every character with its
glyph. We first identify two sets of page-fault sequences for
inferring the start and end of this function. After that, a naive
approach would be to track all accesses to all code pages
during each invocation of this function and to use them to
infer each character. This would work but impose a significant
performance overhead. Instead, we identify a small subset
of code pages subject to the constraint that the number of
page faults over an invocation of TT_Load_Glyph uniquely
identifies the character being rendered.

Our attack starts with an offline analysis in which we render
all distinct characters (i.e., letters and punctuation marks) and
find the page-fault counts for the selected set of code pages
that can uniquely identify each character. During the online
attack, we use the two sets of page-fault sequences to identify
the start and the end of TT_Load_Glyph and log the page-
fault counts of the selected code pages for each invocation of
TT_Load_Glyph. Finally, we deterministically identify each
rendered character by comparing these counts with the counts
we obtained from the offline analysis. The last stage can be
done either online or offline.

B. Hunspell
Hunspell is a popular spell checking tool widely used in

many software packages, including Mac OS X and Google
Chrome. Hunspell loads words in a dictionary into a hash table
in memory and checks if a word is in the hash table to decide
the correctness of its spelling. The hash table uses separate
chaining with linked lists to handle hash collisions. In other
words, the hash table starts with an array of pointers to linked
lists. The indices to the array are hash values. Each linked list
contains all words with the same hash value. Figure 4 shows
an example of the hash table.

When inserting a word into the hash table, Hunspell ac-
cesses multiple data pages, including the page of the pointer

!"#$%&

!"#$%'

!"#$%(

)*+,-$.%".."/%01234$-56

)-.

)-.

)-.

7+5-%,*8$5

!"#$%9

!"#$%:

!"#$%;

<*.8=%

,$>-

<*.8?

,$>-

<*.8@

,$>-

<*.8A

,$>-

!"#$ %&'()

<*.8= &B%9

<*.8? 'B%9

<*.8@ &B%:

<*.8A 'B%9B%;

!"#$5%"55*3+"-$8%
<+-C%$"3C%<*.8

Fig. 4: The hash table in Hunspell.

to the linked list and the pages of the nodes on the linked
list. Similarly, when looking up a word from the hash table,
Hunspell accesses the same data pages in the same order as
accessed during insertion. If we know which sequence of data
pages is being accessed when a word is being inserted, we can
tell when it is being checked by observing the same sequence
of data pages accessed during lookup. We assume knowledge
of the dictionary used by Hunspell. Since Hunspell inserts
dictionary words sequentially, we know the order of insertion
as well.

In Hunspell, the function HashMgr::add_word does in-
sertion and the function HashMgr::lookup does lookup.
We identify four sets of page fault sequences for infer-
ring the start and the end of HashMgr::add_word and
HashMgr::lookup.

During the online attack, we use the four sets of page-fault
sequences to infer the invocations of HashMgr::add_word
and HashMgr::lookup. During each invocation, we trap all
data-page accesses. Given the recorded page-fault sequence,
we first identify the sequence of data pages accessed for each
word in the dictionary. Then we use these sequences to infer
the words looked up by Hunspell. This can be done either
online or offline. Note that at any data page fault, we do not
make other pages inaccessible; removing access to pages is
only done at code page faults.

It is possible that Hunspell accesses the same sequence of
data pages when inserting two different words into the hash
table. When this happens, there is more than one choice for the
word being checked, resulting in an ambiguity. Fortunately,
our experiments show that the degree of ambiguity is low,
even though we only have page-level access traces. This is
due to the low correlation between a word’s hash value and
its location in the input dictionary. Since words are inserted
sequentially according to their order in the dictionary, the list
nodes of words adjacent in the dictionary are likely to reside
on the same page or contiguous pages; on the other hand,
adjacent words in the dictionary typically have very different
hash values such that the pointers to their linked lists are on
different pages. As a result, the possibility that multiple words
share exactly the same sequence of data pages is relatively low.
To mitigate the ambiguity, we leverage a language model to
identify which word is more likely to appear than others. This
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Folklore, legends, myths and fairy tales
have followed childhood through the ages,
for every healthy youngster has a wholesome
and instinctive love for stories fantastic,
marvelous and manifestly unreal. The winged
fairies of Grimm and Andersen have brought
more happiness to childish hearts than all
other human creations.

folklore *legend* myths and fairy *tale*
have *follow* childhood through the *age*
for every healthy youngster has a wholesome
and instinctive love for [store] fantastic
marvelous and *manifest* unreal the [wine]
*fairy* of [grill] and Andersen have brought
more happiness to childish *heart* than all
other human *create*

Fig. 10: A sample output of the Hunspell attack on Haven (right) and the original input (left). Brackets ([ ]) denote words that the attack
could not uniquely identify and for which the language model failed to resolve the ambiguity correctly. Asterisks (*) denote words with
missing prefixes or suffixes. The sample text is the first paragraph of the Introduction in The Wonderful Wizard of Oz.

!"#$#%&' ()*+,)")-

!"#$#%&' ()*+,)")-

.&/

.0/

Fig. 11: A small sample of the images we used to test the libjpeg
attack.

words were recovered exactly without the language model. The
accuracy was improved to 88% after using the language model
to resolve ambiguities. If we include words recovered without
affix, the accuracy reaches 96%. Less than 1.1 percent of the
words were not recovered at all because they were either not
in the dictionary (e.g., names) or skipped by Hunspell (e.g.,
numbers).

Overall, our Hunspell attack demonstrates significant infor-
mation leakage that permits recovery of almost the entire input
text. Even without punctuations, the output of our attack tends
to be easily comprehensible. Figure 10 shows a sample.

3) Libjpeg: We downloaded a test set of 18 JPEG images
from various sites on the internet. We tried to collect a diverse
set of images, including complex high-resolution photos as
well as simpler logo-style images.

We ran the libjpeg application from Section V on these input
files. For each run, our attack code collected a page-fault trace.
Our post-processing tool extracted a BMP file from each of
the traces.

Figure 11 displays two examples of pairs of inputs and
images recovered by the attack. Figure 15 in the appendix
displays all other image pairs in our test sample. The quality
and accuracy of the extracted outputs varies depending on the
input image. However, in most cases, enough information was
leaked to easily identify important features of the image.

4) ASLR: We ran our ASLR attack against FreeType, Hun-
spell, and libjpeg on Windows. For every loaded executable,
we need to capture only the first two code page faults on

the executable to recognize it. For each application, we ran
the experiments 10 times. In all experiments, we correctly
identified all loaded executables.

B. Performance
This section analyzes the overhead introduced by the at-

tacks. The goal is to analyze whether the attacks cause delays
in the execution of the applications that are so large as to
draw attention to them. On normal commodity systems, events
such as interrupts, network and disk activity, virus scans
and periodic activity by different system services introduce
jitter into the execution time of applications. Multi-user cloud
hosting environments, which are the target of recent shielding
systems [10], [39], display an even higher level of background
noise due to network delays, activity by other users on the
same physical machine or virtual machine migration. The
question we try to answer in this section is whether the
delays caused by the attacks could plausibly be hidden in this
background noise.

1) FreeType: Figure 12 compares the baseline running time
of the FreeType application with the running time when under
attack (attack time). The numbers under the whole file column
are averaged over ten runs over the entire 208 KB Wizard
of Oz input file. The overhead is 3.74x on Haven and 32.1x
on InkTag, with total attack running times of 19.3 seconds
on Haven and 280.21 seconds on InkTag. These times are
not insignificant. However, the FreeType application is effec-
tively a microbenchmark. It renders hundreds of thousands
of characters into a memory buffer in a tight loop. Real
applications typically would intersperse font rendering with
other operations such as waiting for keyboard input or, if
running in the cloud, communicating screen contents over the
network to a remote terminal.

We consider rendering an entire screen full of characters
to the user as an example of an expensive font rendering
operation a typical application might perform. To approximate
this operation, we have run the attack on chunks of 5 KB from
the original input file. The 5 KB columns in Figure 12 display
the averages over ten runs over the first ten non-overlapping
5 KB chunks from the input file. The running times are 0.52
seconds on Haven and 6.62 seconds on InkTag. The running
time on Haven appears small enough to plausibly disappear in
the timing noise of cloud and even local systems.

The page-fault count (pf count) on Haven is around half
the page-fault count on InkTag. This difference is the result

651651

Folklore, legends, myths and fairy tales
have followed childhood through the ages,
for every healthy youngster has a wholesome
and instinctive love for stories fantastic,
marvelous and manifestly unreal. The winged
fairies of Grimm and Andersen have brought
more happiness to childish hearts than all
other human creations.

folklore *legend* myths and fairy *tale*
have *follow* childhood through the *age*
for every healthy youngster has a wholesome
and instinctive love for [store] fantastic
marvelous and *manifest* unreal the [wine]
*fairy* of [grill] and Andersen have brought
more happiness to childish *heart* than all
other human *create*

Fig. 10: A sample output of the Hunspell attack on Haven (right) and the original input (left). Brackets ([ ]) denote words that the attack
could not uniquely identify and for which the language model failed to resolve the ambiguity correctly. Asterisks (*) denote words with
missing prefixes or suffixes. The sample text is the first paragraph of the Introduction in The Wonderful Wizard of Oz.
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attack.

words were recovered exactly without the language model. The
accuracy was improved to 88% after using the language model
to resolve ambiguities. If we include words recovered without
affix, the accuracy reaches 96%. Less than 1.1 percent of the
words were not recovered at all because they were either not
in the dictionary (e.g., names) or skipped by Hunspell (e.g.,
numbers).

Overall, our Hunspell attack demonstrates significant infor-
mation leakage that permits recovery of almost the entire input
text. Even without punctuations, the output of our attack tends
to be easily comprehensible. Figure 10 shows a sample.

3) Libjpeg: We downloaded a test set of 18 JPEG images
from various sites on the internet. We tried to collect a diverse
set of images, including complex high-resolution photos as
well as simpler logo-style images.

We ran the libjpeg application from Section V on these input
files. For each run, our attack code collected a page-fault trace.
Our post-processing tool extracted a BMP file from each of
the traces.

Figure 11 displays two examples of pairs of inputs and
images recovered by the attack. Figure 15 in the appendix
displays all other image pairs in our test sample. The quality
and accuracy of the extracted outputs varies depending on the
input image. However, in most cases, enough information was
leaked to easily identify important features of the image.

4) ASLR: We ran our ASLR attack against FreeType, Hun-
spell, and libjpeg on Windows. For every loaded executable,
we need to capture only the first two code page faults on

the executable to recognize it. For each application, we ran
the experiments 10 times. In all experiments, we correctly
identified all loaded executables.

B. Performance
This section analyzes the overhead introduced by the at-

tacks. The goal is to analyze whether the attacks cause delays
in the execution of the applications that are so large as to
draw attention to them. On normal commodity systems, events
such as interrupts, network and disk activity, virus scans
and periodic activity by different system services introduce
jitter into the execution time of applications. Multi-user cloud
hosting environments, which are the target of recent shielding
systems [10], [39], display an even higher level of background
noise due to network delays, activity by other users on the
same physical machine or virtual machine migration. The
question we try to answer in this section is whether the
delays caused by the attacks could plausibly be hidden in this
background noise.

1) FreeType: Figure 12 compares the baseline running time
of the FreeType application with the running time when under
attack (attack time). The numbers under the whole file column
are averaged over ten runs over the entire 208 KB Wizard
of Oz input file. The overhead is 3.74x on Haven and 32.1x
on InkTag, with total attack running times of 19.3 seconds
on Haven and 280.21 seconds on InkTag. These times are
not insignificant. However, the FreeType application is effec-
tively a microbenchmark. It renders hundreds of thousands
of characters into a memory buffer in a tight loop. Real
applications typically would intersperse font rendering with
other operations such as waiting for keyboard input or, if
running in the cloud, communicating screen contents over the
network to a remote terminal.

We consider rendering an entire screen full of characters
to the user as an example of an expensive font rendering
operation a typical application might perform. To approximate
this operation, we have run the attack on chunks of 5 KB from
the original input file. The 5 KB columns in Figure 12 display
the averages over ten runs over the first ten non-overlapping
5 KB chunks from the input file. The running times are 0.52
seconds on Haven and 6.62 seconds on InkTag. The running
time on Haven appears small enough to plausibly disappear in
the timing noise of cloud and even local systems.

The page-fault count (pf count) on Haven is around half
the page-fault count on InkTag. This difference is the result
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Architecture-Related Side Channels
• Memory access pattern
• Cache side channel

– Prime+Probe
– Flush+Reload
– Evict+Time
– Flush+Flush
– Prime+Abort

• Cache coherence side 
channel

• Branch predictor side 
channel

• No efficient protection, 
naïve approach is 
infeasible/impractical

• Affecting cloud servers 
down to IoT

• Full computing stack
– Application, program, 

compiler, system, 
architecture, and hardware

– Techniques must be 
composable

Solihin - ISVLSI 2019 Keynote



Memory Access Pattern

• Data leaks through 
access pattern, e.g.

• By looking at access 
pattern we can 
reconstruct Data[i] 
values

• Current protection: 
ORAM
– Block address 

randomized after each 
access

if (Data[i] == 0) { 
  ... = A[i];
else
  ... = B[i];
}
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ObfusMem [ISCA ’17]

• Premise
– Memory becoming smart

• 3D memory has logic layer
• Memory interface 

packetized
• We can put crypto engine in 

memory

• Secure channel between 
processor and memory
– 10% overheads vs. 900% in 

ORAM
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Secure channel
Solihin - ISVLSI 2019 Keynote



ObfusMem Performance Overheads
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Conclusions

• SEE is needed more than ever

– Hardware root of trust reduces attack surface

– Shift from cloud to edge computing

– NVM augmenting/replacing DRAM as main memory

• Industry effort (TEE) needs substantial 

improvements

– Must consider multi-processors, side channels, 

persistent memory

• Great time to work on architecture support for 

security! 
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Thank you and I’d be happy to 
answer your questions

Yan.solihin@ucf.edu
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